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Preface 
 

In many cases, information about the behavior of a dynamical 

system is uncertain. In order to obtain a more realistic (not more 

exact!) model, we have to take into account these uncertainties. Also, 

in several cases the uncertainties are not of statistical type. For 

example, having some linguistic information and when we cannot 

repeat a measurement are such cases.  

 

Fuzzy differential equations (FDE) are a natural way to model 

dynamical systems under possibilistic uncertainty. Also, in modeling 

real world phenomena, fuzzy initial value problems (FIVP) appear 

naturally and not always as a fuzzified version of a crisp problem. 

Therefore, we do not start with a crisp equation which is fuzzified, but 

with a fuzzy model adequate for some real world phenomena. 
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Fundamentals of Fuzzy Sets 

        In mathematics, fuzzy sets are sets whose elements have degrees of membership. Fuzzy 

sets were introduced by Lotfi A. Zadeh and Dieter Klaua in 1965 as an extension of the 

classical notion of set. At the same time, Salii (1965) defined a more general kind of 

structure called an L-relation, which he studied in an abstract algebraic context. Fuzzy 

relations, which are used now in different areas, such as linguistics (De Cock, Bodenhofer & 

Kerre 2000) decision-making (Kuzmin 1982) and clustering (Bezdek 1978), are special cases 

of L-relations when L is the unit interval 

 [0, 1]. 

          In classical set theory, the membership of elements in a set is assessed in binary terms 

according to a bivalent condition — an element either belongs or does not belong to the set. 

By contrast, fuzzy set theory permits the gradual assessment of the membership of elements 

in a set; this is described with the aid of a membership function valued in the real unit 

interval [0, 1]. Fuzzy sets generalize classical sets, since the indicator functions of classical 

sets are special cases of the membership functions of fuzzy sets, if the latter only take values 

0 or 1. In fuzzy set theory, classical bivalent sets are usually called crisp sets. The fuzzy set 

theory can be used in a wide range of domains in which information is incomplete or 

imprecise, such as bioinformatics.  

 

1.1 Introductions of Fuzzy Sets 

 

Definition of Fuzzy Set 

          A fuzzy set is a pair ( , )AA    where A  is a set  and  : [0,1]A A  . 

          For each x  the value ( )A x   is called the grade of membership of  in ( , )AA  .For a 

finite set 1{ , , },nA x x  the fuzzy set ( , )AA    is often denoted  by 
1 2

1 2

( ) ( ) ( )
, ,. ,

A A A n

n

x x x

x x x

   



 


 . 

         Let x A . Then x  is called not included in the fuzzy set ( , )AA   if ( ) 0A x  , x  is called  

fully included  if ( ) 1A x   and x  is called a fuzzy member  if  0 ( ) 1A x    

 

         Example :  We consider statement "Jenny is young". At this time, the term "young" is 

vague. To represent the meaning of "vague" exactly, it would be necessary to define its 

membership function as in Fig 1.1. When we refer "young", there might be age which lies in 

the range [0,80] and we can account these "young age" in these scope as a continuous set. 

The horizontal axis shows age and the vertical one means the numerical value of 

membership function. The line shows possibility (value of membership function) of being 

contained in the fuzzy set "young". For example, if we follow the definition of "young" as in 

the figure, ten year-old boy may well be young. So the possibility for the "age ten‖ to join 

the fuzzy set of "young is 1. Also that of "age twenty seven" is 0.9. But we might not say 

young to a person who is over sixty and the possibility of this case is 0.Now we can 

manipulate our last sentence to "Jenny is very young". In order to be included in the set of 
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"very young", the age should be lowered and let us think the line is moved leftward as in the 

figure. If we define fuzzy set as such, only the person who is under forty years old can be 

included in the set of "very young". Now the possibility of twenty-seven year old man to be 

included in this set is 0.5. 

That is, if we denote A= "young" and B="very young", 
(27) 0.9, (27) .5A B     

                             
Fig. 1.1. Fuzzy sets representing ―young‖ and ―very young‖ 

 

1.2   Expanding concepts of Fuzzy Set 

             

        1.2.1     Definition (Type-n Fuzzy Set) : The value of membership degree might 

include uncertainty. If the value of membership function is given by a fuzzy set, it is a type-2 

fuzzy set. This concept can be extended up to Typen fuzzy set. 

 

            Example : Consider set A= ―adult‖. The membership function of this set maps whole 

age to ―youth‖, ―manhood‖ and ―senior. For instance, for any person x, y, and z, 

( )A x  = ―youth‖ 

( )A y  = ―manhood‖ 

( )A z  =   . 

The values of membership for ―youth‖ and ―manhood‖ are also fuzzy sets ,and thus the set 

―adult‖ is a type-2 fuzzy set.The sets ―youth‖ and ―manhood‖ are type-1 fuzzy sets. In the 

same manner, if the values of membership function of ―youth‖ and ―manhood‖are type-2, the 

set ―adult‖ is type-3. 

   
Fig. 1.2. Fuzzy Set of Type-2 

            



 

Fundamentals of Fuzzy Sets Page 1/3 

      1.2.2     Definition (Level-k fuzzy set): The term ―level-2 set‖ indicates fuzzy sets 

whose elements are fuzzy sets (Fig 1.8). The term ―level-1 set‖ is applicable to fuzzy sets 

whose elements are no fuzzy sets ordinary elements. In the same way, we can derive up to 

level-k fuzzy set. 

          Example : In the figure, there are 3 fuzzy set elements 
0.5 1.0 0.5

, ,
1 2 3

A
A A A

 
  

 
  

 
Fig. 1.3 (a) elements of level-2 fuzzy set, A1, A2,A3 

( 1) 0.5

( 2) 1.0

( 3) 0.5

A

A

A

A

A

A












                                         

                                                               Fig. 1.3 (b) level-2 fuzzy set  

 

 

     Example : Consider a universal set X which is defined on the age domain. 

                               X = {5, 15, 25, 35, 45, 55, 65, 75, 85}  

We can define fuzzy sets such as ―infant‖, ―young‖, ―adult‖ and ―senior‖ in X.  

The possibilities of each element of x to be in those four fuzzy sets are in Table 

 

 
 Example of fuzzy set 
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 1.3   Some kind of Fuzzy Set: 

  

 1.3.1   α-Cut Set:  

            The α-cut set A is made up of members whose membership is not less than α. 

AA  = {x X | (x) }     

note that α is arbitrary. This α-cut set is a crisp set. 

    Strong α-Cut: + AA  = {x X | (x)> }     

          

         Example: In the example 1.4,  

 

0.2

0.2

{15, 25, 35, 45}

{25, 35, 45}

Young

Young 



  

 

1.3.2    Level set : 

            The value α which explicitly shows the value of the membership function, is in the 

range of [0,1]. The ―level set‖ is obtained by the α’s. That is, 

A A = { | (x) = , 0, x X}       

 

          Example: The level set of the above fuzzy set ―young‖ is, 

 

A = {0, 0.1, 0.2, 0.4, 0.8, 1.0}  

 

1.3.3    Fuzzy Subset : 

 

              A Fuzzy set A is said to be fuzzy subset of B  if                        . 

 

 

 

1.3.4    Hight of the Fuzzy Set :  

 

 

1.3.5    Normal Fuzzy Set : 

               

                A Fuzzy Set A is said to be normal if  ( ) 1h A    

 

1.3.6    Core of Fuzzy Set : 

core( ) { | ( ) 1}AA x X x    

 

 

1.3.7   Support of the Fuzzy Set : 

supp(A)={ | ( ) 0}Ax X x   

 

 

h(A) sup ( ) ,  for Continuous

h(A) sup ( ) , for Discrete

A

x X

A

x X

x

x












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1.3.8    Definition (Convex fuzzy set): 

            Assuming universal set X is defined in ndimensional Euclidean Vector space   . If 

all the α- cut sets are convex,the fuzzy set with these α-cut sets is convex. In other words, if a 

relation 

      min ,  where  (1 ) ;  , n

A A Aµ t µ r µ s t r s r s       

       

        Fig 1.4 a) Convex Fuzzy Set    A Aµ t rµ                 Fig 1.4 b) Non-Convex Fuzzy Set 

   A Aµ t rµ
 

 

1.4    The Magnitude of Fuzzy Set: 

 

            In order to show the magnitude of fuzzy set, there are three ways of measuring the 

cardinality of fuzzy set. 

1.4.1)scalar cardinality: 
           we can derive magnitude by summing up the membership degrees. 

( )A

x X

A x


   

           The magnitude of fuzzy set ―senior‖ (in the example 1.4) is, 

|senior| = 0.1 + 0.2 + 0.6 + 1 + 1 = 2.9 

 

1.4.2)relative cardinality: 

          Comparing the magnitude of fuzzy set A with that of universal set X can be an idea. 

A
A

X
  

          In the case of ―senior‖,|senior| = 2.9, |X| = 9,||senior|| = 2.9/9 = 0.32 

1.4.3)Fuzzy cardinality: 

           Let’s try to get α-cut set (crisp set)    , of A. The number of elements is |  |. In other 

words, the possibility for number of elements in A to be |  | is α. Then the membership 

degree of fuzzy cardinality |A| is defined as, 

                | | |  |         ,Where     is a α-cut set and     is a level set.  

 

           In the example 1.4, If we cut fuzzy set ―senior‖ at α=0.1, there are 5 elements in the 

 α-cut set. 

          senior0.1 = {45, 55, 65, 75, 85}, |senior0.1| = 5.  
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      In the same manner, there are 4 elements at α=0.2, there are 3 at α=0.6, there are 2 at 

α=1. Therefore the fuzzy cardinality of ―senior‖ is  

|senior| = {(5, 0.1), (4, 0.2), (3, 0.6), (2,1)}. 

 

1.5   Standard Operations of Fuzzy Set: 
 

        Complement set  ̅ , union A B, and intersection A B represent the standard 

operations of fuzzy theory and are arranged as, 

 
1.5.1  Fuzzy Complement: 

          Complement set  ̅ of set A carries the sense of negation. Complement set may be 

defined by the following function C. 

          Complement function C:[0,1]→[0,1] is designed to map membership function 

      of fuzzy set A to [0,1] and the mapped value is written as C[     ] 

                                   i.e.   ̅     C[     ] 

         To be a fuzzy complement function,when the axioms should be satisfied. 

    

    (Axiom C1):      C(0) = 1, C(1) = 0………………….(boundary condition) 

     

    (Axiom C2):    a,b   [0,1] , if a  b, then C(a) C(b)……….(monotonic nonincreasing) 

                           Symbols a and b stand for membership value of member x in A.      

 

      For example, when      =a,      =b; x,y   X, if       <      , C(     )  C(     ). 

 

            C1 and C2 are fundamental requisites to be a complement function. 

            hese two axioms are called ―axiomatic skeleton‖. For particular purposes,we can   

insert additional requirements. 

 

     (Axiom C3) :     C is a continuous function. 

 

     (Axiom C4) :      C is involutive. C(C(a)) = a,   a [0,1] 

 

 
Fig 1.5 standard complement set function 
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Examples: 

 

 

 

 

a)                                    C(a) =  
          

 
 

 

 

 

(C1)     C(0) = 1 and C(1) = 0 

 

(C2)     C’(a) = –½  sin(  a) < 0 since sin(  a) > 0 for a   (0,1) 

 

(C3)        Is continuous as a composition of continuous functions 

 

(C4)     not valid → counter example 

            
      

 

 

       

b)                         C(a) =     –      
 

     for  w > 0   ( Yager class ) 

 

 

  (C1)     C(0) = 1 and C(1) = 0 

        

       (C2)         –      
 

      –      
 

  

             =>     –        –     

             =>         

             =>      

           

       (C3)     Is continuous as a composition of continuous functions 

       

       (C4)    
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c)                        C(a) =  
   

    
    for  > -1         (Sugeno class) 

     

   (C1)   C(0) = 1 and C(1) = 0 

       

   (C2)     

                 
 

    (C3)   Is continuous as a composition of continuous functions 

    

    (C4)    

              
 

1.5.2  Fuzzy Union: 

 

Union of A and B is specified by a function of the form. 

                        U:[0,1] [0,1]→[0,1] 

This union function calculates the membership degree of union A B from those of A 

and B. 

                       
 

This union function should obey next axioms. 

 

(Axiom U1) :      U(0,0) = 0, U(0,1) = 1, U(1,0) = 1, U(1,1) = 1………(boundary condition) 

 

(Axiom U2) :      U(a,b) = U(b,a)……………….(Commutativity) 

 

(Axiom U3) :       If   a a’ and b b’  =>  U(a, b)   U(a’, b’)………..(monotonic condition) 

 

(Axiom U4) :      U(U(a, b), c) = U(a, U(b, c))……………….. (Associativity) 

 

          The above four statements are called as ―axiomatic skeleton‖. It is often to restrict the 

class of fuzzy unions by adding the following axioms. 

 

(Axiom U5):        Function U is continuous. 

 

(Axiom U6):        U(a, a) = a……………….(Idempotency) 
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Examples of Union Function : 

                      

                            Yager’s union function holds all axioms except U6. 

                                         
 

 ] ,   where  w        

 

 

 

         The shape of Yager function varies with parameter w. For instance, 

w = 1    , leads to                  (a, b) = Min[1, a+b] 

w = 2    , leads to                 (a, b) = Min[1, √     ] 

 

       What if w increases? 

Supposing w→ , Yager union function is transformed into the standard union function. 

                                         

1

lim [1,( ) ] ( , )w w w

w
Min a b Max a b


    

 

 
Fig 1.6 Visualization of standard union operation 

 

 

 

1.5.3   Fuzzy Intersection : 

      Intersection A B is defined by the function I. 

I:[0,1]   [0,1] → [0,1] 

The argument of this function shows possibility for element x to be involved in both 

fuzzy sets A and B. 
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Intersection function holds the following axioms: 

 

(Axiom I1) :        I(1, 1) = 1, I(1, 0) = 0, I(0, 1) = 0, I(0, 0) = 0…….….(boundary condition) 

 

(Axiom I2) :        I(a, b) = I(b, a)……………………..(Commutativity) 

 

(Axiom U3) :       If   a a’ and b b’  =>  I(a, b)   I(a’, b’)………..(monotonic condition) 

 

(Axiom U4) :      I(I(a, b), c) = I(a, I(b, c))……………….. (Associativity) 

 

                  The above four statements are called as ―axiomatic skeleton‖. 

 

(Axiom U5):        Function I is continuous. 

 

(Axiom U6):        I(a, a) = a……………….(Idempotency) 

 

Examples of Intersection Function : 
                      

Yager’s Intersection function holds all axioms except I6. 

                               
 

 ] ,   where  w        

 

         The shape of Yager function varies with parameter w. For instance, 

w = 1    , leads to                  (a, b) = 1-Min[1, 2-a-b] 

w = 2    , leads to                 (a, b) =1- Min[1, √             ] 

 

       What if w increases? 

Supposing w→ , Yager union function is transformed into the standard union function. 

                             

1

lim(1 [1,((1 ) (1 ) ) ] ( , )w w w

w
Min a b Min a b


      

 

 
Fig 1.7 Visualization of standard fuzzy intersection set 
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1.6  Distance in Fuzzy Set : 

 

(1.6.1) Hamming distance:                        This concept is marked as, 

1,

( , ) ( ) ( )
n

A i B i

i i

d A B x x
x X

 


 


  

Example:   Following A and B for instance, 

                           A = {(x1, 0.4), (x2, 0.8), (x3, 1), (x4, 0)} 

                           B = {(x1, 0.4), (x2, 0.3), (x3, 0), (x4, 0)} 

Hamming distance ,  d(A, B) = |0| + |0.5| + |1| + |0| = 1.5 

 

Assuming n elements in universal set X; i.e., |X| = n, the relative Hamming distance is, 

( , )
( , )

d A B
A B

n
   

 

(1.6.2) Euclidean distance:                 
2

1

( , ) ( ( ) ( ))
n

A B

i

e A B x x 


   

Euclidean distance between sets A and B used for the previous Hamming distance is 

2 2 2 2( , ) 0 0.5 1 0 1.25 1.12e A B        

and relative Euclidean distance is 
( , )

( , )
e A B

A B
n

   . 

 

(1.6.3) Minkowski distance :           

1

( , ) ( ) ( ) , [1, )
w

w
w A Bd A B x x w

x X
 

 
    

 
  

Generalizing Hamming distance and Euclidean distance results in Minkowski distance. It 

becomes the Hamming distance for w = 1 while the Euclidean distance for w = 2. 

 

 

1.7   t-norms and t-conorms: 

 

 

  1.7.1   Definition (t-norm):  

T : [0,1] [0,1] [0,1] 

 x, y, x’, y’, z   [0,1] 

i) T(x, 0) = 0, T(x, 1) = x………………boundary condition 

                         ii) T(x, y) = T(y, x)…………………commutativity 

  iii) (x  x’, y  y’)  T(x, y) T(x’, y’)…………. monotonicity 

                         iv) T(T(x, y), z) = T(x, T(y, z)) …………associativity 
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Now we can easily recognize that the following operators hold conditions for t-norm 

(1) Intersection operator  

(2) Algebraic product operator 

(3) Bounded product operator  

(4) Drastic product operator  

 

1.7.2    Definition (t-conorm (s-norm)):    

                                                           : [0,1] [0,1] [0,1] 

 x, y, x’, y’, z  [0,1] 

                               i)   (x, 0) = x,   (x, 1) = 1……..boundary condition 

                    ii)   (x, y) =   (y, x) ……………commutativity 

                   iii) (x  x’, y y’)    (x, y)    (x’, y’)………monotonicity 

                                    iv)   (  (x, y), z) =   (x,   (y, z))………..associativity 

 

 examples of t-conorm operators : 

(1) Union operator  

(2) Algebraic sum operator  

(3) Bounded sum operator  

(4) Drastic sum operator  

(5) Disjoint sum operator 

 All t-norm and t-conorm functions follow :  T(a, b)   Min[a, b]  &   (a, b)  Max[a, b] 

 

1.8    Cartesian product : 

 

      Denoting     
       

         
    as membership functions of              for 

                       , then the probability for n-tuple (  ,         ) to be 

involved in fuzzy set              is, 

             
                     

        
          

      

 

1.9    Fuzzy relation: 

 

        Fuzzy relation has degree of membership whose value lies in [0, 1] 

             

  {             )|                   
 

  1.9.1    Domain and range of fuzzy relation: 

        When fuzzy relation R is defined in crisp sets A and B, the domain and range of this 

relation are defined as  

 
         Set A becomes the support of dom(R) and dom(R) A . Set B is the support of ran(R) 

and ran(R) B. 
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1.10     Fuzzy Matrix: 

 

         Given a certain vector, if an element of this vector has its value between 0 and 1, we 

call this vector a fuzzy vector. Fuzzy matrix is a gathering of such vectors. Given a fuzzy 

matrix A=(   ) and B=(   ), we can perform operations on these fuzzy matrices 

(1) Sum………………                 

(2) Max product……….. max min( , )ik kj
k

A B AB a b       

(3) Scalar product………….  ,where 0 1A     

 

Example:           

0.2 0.5 0.0

0.4 1.0 0.1

0.0 1.0 0.0

A

 
 

  
 
 

 , 

1.0 0.1 0.0

0.0 0.0 0.5

0.0 1.0 0.1

B

 
 

  
 
 

 ;       

1.0 0.5 0.0

0.4 1.0 0.5

0.0 1.0 0.1

A B

 
 

   
 
 

 

         Suppose  C A B   then 
12 0.1C   is calculated by applying the Max-Min operation  

 to the values of the first row (0.2, 0.5 and 0.0) of A  , and those of the second column   

(0.1, 0.0 and 1.0) of B. 

                                              Min       
0.2 0.5 0.0

0.1 0.0 1.0
  

                                                      ----------------------------- 

                                                              0.1   0.0    0.0       Max   0.1 

In the same manner 
13 0.5C    

0.2 0.1 0.5

 C=A B= 0.4 0.1 0.5

0.0 0.0 0.5

 
 

   
 
 

  

 

1.10.1      Fuzzy relation matrix: 

 

          If a fuzzy relation R is given in the form of fuzzy matrix, its elements represent the 

membership values ( , )R i j of this relation  then  ,  ( , )R RM i j   

 

Example: 
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1.10.2     Composition of fuzzy relation: 

 

         Two fuzzy relations R and S are defined on sets A, B and C. That is, R A B,S B C. 

The composition S R=SR of two relations R and S is expressed by the relation from A to C, 

and this composition is defined by the following 

for (x,y) A B ,(y,z) B C ,

then ( , ) max[min( ( , ), ( , ))]S R R S
y

x z x y y z  

   

  

That is,  S R A C    and   M M MS R R S    

 

Example: 

 

 Let A={1,2,3} , B={a,b,c,d} , C={     }; The sets A, B and C shall be the sets of events. 

 

 Consider fuzzy relations, R A B, S B C, 

 By the relation R, we can see the possibility of occurrence of B after A, and by S, that of C 

after B. 

 

 

For example, 

by   , the possibility of a B after 1 A is 0.1 

 

by   , the possibility of occurrence  of    after a is 0.9 

 

 

       we cannot guess the possibility of C when A is occurred. So our main job now will be 

the obtaining the composition  S R A C  

 

 

            

      

R

0.1 0.2 0.0 1.01

0.3 0.3 0.0 0.22

3 0.8 0.9 1.0 0.4

a b c d

                      

S

0.9 0.0 0.3

0.2 1.0 0.8

0.8 0.0 0.7

0.4 0.2 0.3

a

b

c

d

 
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Suppose, 

(1, ) max[min{ (1, ), ( , )}]

               = max[min{ (1, ), ( , )},min{ (1, ), ( , )},min{ (1, ), ( , )},min{ (1, ), ( , )}]

               = max[min{0.1,0.9},min{0.2,0.2},min{0.0,0.8}

S R R S
y

R S R S R S R S
y

y

y y

a a b b c c d d

    

           

 

,min{1.0,0.4}]

               = max[0.1,0.2,0.0,0.4]

               =0.4

y

  
(3, ) max[min{ (3, ), ( , )}]

               = max[min{ (3, ), ( , )},min{ (3, ), ( , )},min{ (3, ), ( , )},min{ (3, ), ( , )}]

               = max[min{0.8,0.0},min{0.9,1.0},min{0.1,0.0}

S R R S
y

R S R S R S R S
y

y

y y

a a b b c c d d

    

           

 

,min{0.4,0.2}]

               = max[0.0,0.1,0.9,0.2]

               =0.9

y

 In the same manner rest of the elements,                 

S R

1 0.4 0.2 0.3
   

2 0.3 0.3 0.3

3 0.8 0.9 0.8

  

    

 

1.10.3     -cut of Fuzzy Relation: 

 

      We can obtain  α -cut relation from a fuzzy relation by taking the pairs which have 

membership degrees no less than α . 

       Assume R A B, and    is a  α-cut relation. 

         |                  ,    is a crisp relation. 

 

Example:     

S

0.9 0.0 0.3

0.2 1.0 0.8

0.8 0.0 0.7

0.4 0.2 0.3

S

a

M b

c

d

 

     , Level set                                     

 

Now,     0.4

S

0 01

0 1 1

01 1

0 01

S

a

M b

c

d

 


             0.8

S

0 01

0 1 1

0 01

0 0 0

S

a

M b

c

d

 


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1.11    Extension principle: 

 

          Let X be Cartesian product of universal set X=X1 X2  ...  Xr and  A1, A2,….,Ar be r 

fuzzy sets in the universal set. 

Then,          

            
                     

          
      

 

 Let function  f  be from space X to Y,  :f X Y   

 

Then fuzzy set B in Y can be obtained by function f and fuzzy sets A1, A2,….,Ar as follows: 

     

   
1 2

1 2

1

1 2
( .... )

0 ,                      if ( )
( )

{ ( ), ( ),...., ( )} ,
r

r

B

A A A r
y f x x x

f y
y

Max Min x x x otherwise


  



   

  


   
 

  

 

 

 

  1.11.1    Extension of fuzzy relation: 

         

   For given fuzzy set A, crisp set B and fuzzy relation R A B, there might be a mapping 

function expressing the fuzzy relation R. Membership function of fuzzy set B' in B 

is defined as follows : 

For x A, y B, and B’ B,   
1'
( )

( ) { ( ), ( , )}B A R
y f y

y Max Min x x y  


   

 

Example:   

     

Let,                                 A1= {(-1,0.1), (0,0.4), (1,1), (2,0.5),(3,0.1)} 

A2={(0,0.2), (1,0.4), (2,1),(4,0.4),(10,0.1)} 

 

 Now the mapping f, defined for the CRISP arguments              by 

 

               
 

 
   , 

 
Then, 

 ̃                               
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0.2 0.4 1 0.4 0.1

0.1 0.1 0.1 0.1 0.1 0.1

0.4 0.2 0.4 0.4 0.4 0.1

1 0.2 0.4 1 0.4 0.1

0.5 0.2 0.4 0.5 0.4 0.1

0.1 0.1

2 0 1 2 4 10
1

1 1 0.5 0 1 4

0 0 0.5 1 2 5

1 1 1.5 2 3 6

2 2 2.5 3 4 7

3 3 3.5

A
A

         

           

           

           

           

    

  

1 2 1 1 2 2

0.1 0.1 0.1 0.1

1
{ ( ), ( )} max(min ) ( )

2

1 0.1 0.1

0.5 0.1 0.1

0 0.1,0.2 0.2

0.5 0.4 0.4

1 0.1,0.2,0.4 0.4

1.5 0.4 0.4

2 0.4,1,0.2 1

2.5 0.4 0.4

3 0.4,0.5,0.1 0.5

4 5 8 3.5 0.1 0.1

4 0.1,0.1 0.1

5 0.1,0.1 0.1

6 0.1 0.

A A Bz x x Min x x s z  

      

  





1

7 0.1 0.1

8 0.1 0.1

 

  B={
  

   
 
    

   
 

 

   
 
   

   
 

 

   
 
   

   
 
 

 
 
   

   
 

 

   
 
   

   
 

 

   
 

 

   
 

 

   
 

 

   
 

 

   
} 

 

1.12     Distance between fuzzy sets: 

            In space X, pseudo-metric distance d(A, B) between fuzzy sets A and B can be 

defined by extension principle. The distance d(A, B) is given as a fuzzy set. 

 

   ,
( , )

max min{ (, ), ( )}
d A B

d a
A

b
Ba b


   


 

 

Example: 

Let , A={(1, 0.5), (2, 1), (3, 0.3)} and B={(2, 0.4), (3, 0.4), (4, 1)} 

0.4

0.3 0.4

0.5 0.4

( , ) ( ) ( ) min Max, ( ),d(A, B)

0 2 2 1 0.4 0.4

3 3 0.3

1 1 2 0.4 0.4

2 3 1 0.4

3 2 0

0.4

0.3 0.4

0.3

.3

3 4 1 0.3

2 1 0.5 0.43 0.4 1

2 4 1 1 1

3 1 4 0.5 1 0.5 1

A Bd A B a A b B a b      

 

 

        {
 

   
 

 

   
 
 

 
 
 

 
} 
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1.13    FUZZY NUMBER: 

 

         When interval is defined on real number  , this interval is said to be a subset of  . For 

instance, if interval is denoted as A = [a1, a3]; a1, a3   ,a1 < a3, we may regard this as one 

kind of sets. Expressing the interval as membership function is shown in the following 

 

0,  if 1

( ) 1,  if 1 3

0,  if  3

A

x a

x a x a

x a






  
 

 

If a1 = a3, this interval indicates a point i.e , [a1, a1] = a1 

 

Definition: 

             If a fuzzy set satisfy the following conditions : 

 convex fuzzy set 

 normalized fuzzy set 

 it’s membership function is piecewise continuous. 

 It is defined in the real number 

 It should have bounded support 

 

 

The convex condition is that the line by  -cut is continuous and   –cut interval satisfies the 

following relation 

    

1 2

1 1 2 2

[ , ]

( , )

A a a

a a a a

 



    



   
 

 
Fig 1.8   -cut of fuzzy number '( ' ) A A     
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1.13.1    Arithmetic Operations on Fuzzy Numbers: 

              In Classical interval analysis,   4 operations, namely   +, - ,    , / 
            Let  denote,   any of the 4 operations then      egdbfagfedba  ,|,,   

except    edba ,/,  when ],[0 ed . 

 

 

 -cut pproach: 

Let A and B are two fuzzy no's & A  and B  be -cuts of A,B respectively, [0,1]

then, ( )  and ( )A B A B A B A B

 

   



  

       

 

 

1.13.2     Type of  Fuzzy Arithmetic   :                 Interval arithmetic 

                                                                                 Extension principle 

 

 Interval arithmetic method : 

 

Definitions of operations of Intervals: 
 ],[],[],[ ebbaedba   

 ],[],[],[ ebbaedba   

 )],,,max(),,,,[min(],[],[ bebdaeadbebdaeadedba   

 )],,,max(),,,,[min(]/1,/1[],[],/[],[
e

b

d

b

e

a

d

a

e

b

d

b

e

a

d

a
debaedba  ,where ],[0 ed  

●Examples： 

1. [2,5]+[1,3]=[3,8] 

2. [2,5]-[1,3]=[-1,4] 

3. [3,4]‧[2,2]=[6,8] 

4. [4,10]/[1,2]=[2,10] 

 

 Extension principle method :          
( ) sup[min{ ( }]), ( )AA B

z x y
Bz x y  

 


 

 

 

1.13.3    Operation of Fuzzy Number: 

               Previous  operations of interval are also applicable to fuzzy number. Since outcome 

of fuzzy number (fuzzy set) is in the shape of fuzzy set, the result is expressed in 

membership function. 

         

 For Addition(+)…..     max[min{ ( ), ( )}]A BA B
z x y

z x y  


 
   

 For Subtraction(-)….     max[min{ ( ), ( )}]A BA B
z x y

z x y  





  

 For multiplication( )….     max[min{ ( ), ( )}]A BA B
z x y

z x y  





   

 For division(/)….    
/

/
max[min{ ( ), ( )}]A BA B
z x y

z x y  


  
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 For maximum( )….     max[min{ ( ), ( )}]A BA B
z x y

z x y  


 
  

 For minimum( )….     max[min{ ( ), ( )}]A BA B
z x y

z x y  


 
   

 

Examples: 

                  Let,          
A= {(2,1),(3,0.5)}   ;    B = {(3,1),(4,0.5)} 

                                           
Fig 1.9(a) Fuzzy set A                                                        Fig 1.9(b) Fuzzy set B 

 

 

( )( ) ( ) min max(min ), ( )

5 2 3 1 1 1 1

( ) 6 3 3 0.5 1 0.5 0.5

2 4 1 0.5 0.5

7 3 4 0.5 0.5 0.5 0.5

A B A Bz x y x y s z

A B

   

      

 

( )( ) ( ) min max(min ), ( )

2 2 4 1 0.5 0.5 0.5

( ) 1 2 3 1 1 1 1

3 4 0.5 0.5 0.5

0 3 3 0.5 1 0.5 0.5

A B A Bz x y x y s z

A B

   



  
 

                        

1.13.4    Types of Fuzzy Nomber: 

 

1) Triangular fuzzy no 

2)  Trapezoidal fuzzy no 

3) Gaussian fuzzy no 

4) Quasi- Gaussian fuzzy no 

5) Quadratic fuzzy no 

6) Exponential fuzzy no 

7) Quasi- Exponential fuzzy no 

8) Fuzzy singleton   etc. 

 

Here we Discuss only about Triangular and Trapezoidal 

no’s…. 

 

 

Fig 1.10 
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1.13.4.1    Triangular fuzzy no: 

            It is a fuzzy number represented with three points as follows : 1 2 3( , , )A a a a   

This representation is interpreted as membership 

functions 

1

1
1 2

2 3

3
2 3

3 2

3

0    ,

,

( )

,

0   ,

A

x a

x a
a x a

a a
x

a x
a x a

a a

a x







  


 

  
 




 

 

 

Now if you get crisp interval by  -cut operation. 

 

Then interval    shall be  obtained as      
    

  ,         
From the above picture ,  

3 21 1

2 1 3 2

1 2 1 1 2 3 3 2

2 1 1 3 3 2

( ) & ( )

[( ) , ( ) ]

a aa a

a a a a

a a a a a a a a

A a a a a a a



 





 

 


 

 

      

     
 

Example: 

              In the case of the triangular fuzzy number A = (-5, -1, 1), 

the membership function value will be, 

 

0    , 5

5
, 5 1

4
( )

1
, 1 1

2

0   ,1

A

x

x
x

x
x

x

x



 



    


 
   


 

  

 

 

here,  [( 1 5) 5,1 (1 1) ]

              =[4 5,1 2 ]

A  

 

     

 
 

 

 

 

Fig 1.11 α-cut of triangular fuzzy number 
𝑨   𝒂𝟏 𝒂𝟐 𝒂𝟑  

Fig 1.12 α=0.5 cut of triangular fuzzy number 

 A = (-5,-1, 1) 
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Operation of Triangular Fuzzy Number: 

 The results from addition or subtraction between triangular fuzzy numbers result also 

triangular fuzzy numbers. 

 The results from multiplication or division are not triangular fuzzy numbers. 

 Max or min operation does not give triangular fuzzy number. 

 

Here we have to deal the operations with an example of their membership functions. 

Let , 

                                          

0    , 1 0    , 1

1 1
, 1 1 ,1 3

2 2
( )  and  ( )

3 5
,1 3 ,3 5

2 2

0   ,3 0   ,5

[ 1,1,3]; [1,3,5]

and [2 1,3 2 ]; [2 1,5 2 ]

( ) [4 ,8 4 ]

( ) [4 6,2 4 ]

A B

x x

x x
x x

x x
x x

x x

x x

A B

A B

A B

A B

 





 

   

 

 

   
 

 
     
 

  
     

 
   

   

     

  

   

2 2

2 2

[ 4 12 5,4 16 15],  [0,0.5]
( )

[4 1,4 16 15],   [0.5,1]            

[(2 1) / (2 1), (3 2 ) / (2 1)],   [0,0.5]
( / )

[(2 1) / (5 2 ), (3 2 ) / (2 1)],   [0.5,1]

we know t

for
A B

for

for
A B

for





    

   

    

    

      
  

   

    
 

    

but not triangular no
not triangular no

hat ( ) , [0,1]

1
[0,4,8] ;  [ 6, 2,2] ; [ 5,3,15]  ; / [ 1, ,3]

3

A B A B

A B A B A B A B




    

          

 

 

( )

0, for x 0

/ 4,  for 0<x 4
( )

(8 ) / 4, for 4<x 8

0,  for 8<x

A B

x
x

x
 





 

 


    

 

Fig 1.13  A+B
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( )

0 , for -6 x and x>2

( ) ( 6) / 4 , for -6<x -2

(2 ) / 4 , for -2<x 2

A B x x

x

 




  
  

  

 

 

 

 

1/2

( ) 1/2

1/2

0 , for -5<x and 15 x

(3 (4 ) ) / 2 , for -5<x 0
( )( )

(1 ) / 2 , for 0<x 3

[4 (1 ) ] / 2 , for 3 x<15

A B

x
x x

x

x

 




  
 

 
   

  

 

 

 

 

 

( / )

0 , for -1<x and 3 x

( 1) / (2 2 ) , for -1 x<0
( )

(1 5 ) / (2 2) , for 0<x 1/ 3

(3 ) / (2 2) , for 1/3 x<3

A B

x x
x

x x

x x






  
 

  
   

  

 

 

1.13.4.2     Trapezoidal fuzzy number: 

               

  We can define trapezoidal fuzzy number A as A = (a1, a2, a3, a4) 

 

1

1

1 2

2 1

2 3

3

3 4

4 3

4

0    ,

,

1,     ( )

,

0   ,

A

x a

x a
a x a

a a

a x ax

a x
a x a

a a

a x







  




  
 
  






  

 

 

 

 

Operations of Trapezoidal Fuzzy Number similar to the Triangular Fuzzy Number. 

 

 

 

Fig 1.14 A-B

 

Fig 1.15 A.B

 
 

Fig 1.16 A/B

 
 

Fig 1.17 trapezoidal fuzzy number A = (a1, a2, a3, a4) 
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Example: 

Let two trapezoidal fuzzy numbers as A = (1, 5, 6, 9);B = (2, 3, 5, 8) 

2 2

0 0

1 1

[4 1, 3 9]

[ 2, 3 8]

 [0, 1], each element for each interval is positive, multiplication between -cut intervals will be

[4 9 2,9 51 72]

if 0, [2,72]

if 1, [15,30]

A

B

A B

A B

A B

A





 

 

 

 

   





   

   

 

     

  

  

 [2,15,30,72]B 

  

 

Fig 1.18 Multiplication of trapezoidal fuzzy number 

 
 
1.14    FUZZY FUNCTION: 

 

 

Kinds of Fuzzy Function: 

1) Crisp function with fuzzy constraint. 

2) Crisp function which propagates the fuzziness of independent variable to dependent 

variable. 

3) Function that is itself fuzzy. This fuzzifying function blurs the image of a crisp 

independent variable. 

 

 
1.14.1    Crisp function with fuzzy constraint: 

         Let X and Y be crisp sets,and f be a crisp function. A and B are fuzzy sets defined on 

universal sets X and Y respectively. Then the function satisfying the condition

( ) ( ( ))A Bx f x  is called a function with constraints on fuzzy domain A and fuzzy range B. 

Example: 

            We shall investigate a function with the following statement. 

                    ― A competent salesman gets higher income‖ 
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Let X and Y be sets of salesmen and of monthly income [0, ] respectively. And A and B are 

fuzzy sets of ―competent salesmen‖ and“high income‖. 

In this case, the functions       satisfy      and         ,  x f(x) 

 

 

 

1.14.2  Propagation of Fuzziness by Crisp Function: 

       Fuzzy extension function propagates the ambiguity of independent variables to 

dependent variables when  f  is a crisp function from  X to Y, the fuzzy extension function  f  

defines the image     ̃  of fuzzy set  ̃ . That is, the extension principle is applied 

1

1

( )

( )

0 ,                      if ( )
( )

( ),        f

f

x
x

y

f y
y

Max x otherwise





  
 


 

Here we use the sign ~ for the emphasis of fuzzy variable. 

Example: 

     There is a crisp function, ( ) 3 1x xf    

Where its domain is A = {(0,0.9), (1,0.8),(2,0.7),(3, 0.6),(4,0.5)} and its range is B = [0,20]. 

 

        The independent variables have ambiguity and the fuzziness is propagated to the crisp 

set B .Then, we can obtain a fuzzy set B’ in B 

B’= {(1,0.9), (4,0.8), (7,0.7), (10,0.6), (13,0.5)} 

 

 

 

1.14.3 Fuzzifying Function of Crisp Variable: 

        Fuzzifying function from X to Y is the mapping of X in fuzzy power set  ̃   . 

     ̃    

Example: 

                Consider two crisp sets A = {2, 3, 4} and B = {2, 3, 4, 6, 8, 9,12} 

A fuzzifying function  ̃ maps the elements in A to power set  ̃    in the following manner 

 ̃        ̃        ̃       

Where  ̃   ={B1,B2,B3} 

B1 = {(2, 0.5), (4, 1), (6. 0.5)} B2 = {(3. 0.5), (6,1), (9, 0.5), B3 ={(4,0.5), (8, 1), (12, 0.5)} 

 

1.15     Fuzzy bunch of functions: 

              

            Fuzzy bunch of crisp functions from X to Y is defined with fuzzy set of crisp 

function ( 1,..., )if i n  and it is denoted as 

 ̃         ̃     |        

 

Example: 

Let X = {1, 2, 3} and  ̃                                
                         ( )  ,                     
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0.4 0.7 2 0.5

1 2 3

0.4 0.7 0.5 0.7 0.5

0.4 0.7 0.5 0.5 0.4 0.7

0.4 0.7 0.5 0.5 0.4 0.7

( ) ( ) ( ) 1 f

1 1 1 0 f (1) {1 ,0 }

2 2 4 1 f (2) { 1 ,2 ,4 }

3 3 9 2 f (3) { 2 ,3 ,9 }

X f x x f x x f x x    



  

  

 

1.16   Fuzzy Integration: 

 

1.16.1)  Integration of fuzzifying function in crisp interval: 

 

        In non-fuzzy interval [a, b],let the fuzzifying function have fuzzy value  ̃    for x [a, 

b].Integration  ̃      of the fuzzifying function in [a, b] is defined as 

 ̃      *,(∫   
      

 

 

 ∫  
      

 

 

)   - |       + 

 

Here   
  and   

  are  -cut functions of  ̃   . Note that the plus sign(+) in the above formula 

is to express enumeration in fuzzy set but not addition. Therefore, the total integration is 

obtained by aggregating Integrations of each -cut function. 

 

Example: 

                   Let  ̃                               
X=[1,2],    ( )  ,                    

Integration at =0.7 

           

          ∫      
 

 

 

 

 

  ̃ 

 

Integration at =0.4 

                  There are two functions      ( )   and              

  
       ∫     

 

 

 

 

 

  
       ∫         

 

 

 

 

 

 ̃          (
 

 
    )  (

 

 
    )  

  ̃      {(
 

 
    )  (

 

 
    )  (

 

 
    )} 
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1.16.2 )  Integration crisp function in fuzzy interval: 

                 

             Integration I(A, B) of non-fuzzy function   in fuzzy interval [A, B] is defined as, 

   
,

,
( ) max min{ ( ), ( )} , where ( )

I A B

b

A B
x y

a

z x y z f u du     

Example: 

              Let A = {(4,0.8), (5,1), (6,0.4)};B = {(6,0.7), (7, 1), (8,0.2)}  

               

 ̃      ∫       

 

 

 ∫    

 

 

 

[ , ] 2 min[ ( ), ( )]

[4,6] 4 0.7

[4,7] 6 0.8

[4,8] 8 0.2

[5,6] 2 0.7

[5,7] 4 1.0

[5,8] 6 0.2

[6,6] 0 0.4

[6,7] 2 0.4

[6,8] 4 0.2

b

A B

a

a b dx a b 

  ( , ) {(0,0.4),(2,0.7),(4,1),(6,0.8),(8,0.2)}I A B    

 

 

1.17   Fuzzy Differentiation: 

 

 

   1.17.1   Differentiation of crisp function on fuzzy points: 

 

                By the extension principle, differentiation         of non-fuzzy function f at fuzzy 

point or fuzzy set A is defined as 

'( )
( )

( ) max ( )f A A
f x y

y x 


  

Example: 
3

2

Let  {( 1,0.4),(0,1),(1,0.6)} and ( )

'( ) 3 ,  then '( ) {(3,0.4),(0,1),(3,0.6)} {(0,1),(3,0.6)}

A f x x

f x x f A

  

  
  

 

 

1.17.2    Differentiation of fuzzifying function in crisp interval: 

 

            Similar as integration of fuzzifying function in the crisp interval. 
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Example: 
2 3

1 2 3 1 2 3

2

1 2 3

1

2

3

Let f {( ,0.4),( ,0.7),( ,0.4)},  where  ( ) , ( ) , ( ) 1

'( ) 1, '( ) 2 , '( ) 3

'(0.5) 1,where 0.4

'(0.5) 1,where 0.7

'(0.5) 0.75,where 0.4

f f f f x x f x x f x x

f x f x x f x x

f

f

f







    

  

 

 

 

  

 

 (
  ̃

  
)
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Perspectives of Fuzzy Initial Value Problems 
 

In the modeling of real world phenomena, often some or most of the pertinent 

information may be uncertain. For example, the precise initial state may not beknown or 

information  about various parameters required as a part of the model may be 

imprecise.Many times, the nature of the uncertainty involved may not be statistical. In such 

situations involving uncertainties, Fuzzy deferential equations(FDEs) are a natural way to 

model dynamical systems. Here, we are interested in issues concerning Fuzzy Initial Value 

Problems (FIVP). 

 

            Consider the initial value problem (IVP for short) for the fuzzy differential 

equation 

    (   )  (  )            (1) 

 

Where             ,       -     and (    ) is a complete fuzzy metric 

space. 

Let us first note that a mapping         is a solution of the IVP (1) if and only if it 

is continuous and satisfies the integral equation 

0

0( ) ( , ( )) ,   

t

t

u t u f s u s ds t J    (2) 

We also observe that if u(t) satisfies (1) then 0[ ( )] [ ] ,  [0,1]dia u t dia u      

where diam means the diameter of the set involved. 

 

2.1   Lipschitz condition for possesses a unique solution: 

 , (   )  (   )-    ,   - (3) 

where       . Then (1) has unique solution u(t) on J. 

 

Proof: Reference 

Example: 

Let          be continuous. Define         by  (   )   ( )   ( ), 

where the multiplication in E' is given by Zadeh's extension principle.  

 Let  , ( )-  ,  
    

 - and , -  ,  
    

 - , Then a straight forward computation 

shows that f (t, u) satisfies the assumptions of Lipschitz condition then (1) has unique 

solution on J. 
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2.2   Existence of IVP: 

          Assume that            and  

 [ (   )  ̃]                

         where   ̃      is defined as  ̃( )                ̃( )          . 

          Then IVP (1) has a solution u(t) on J. 

Global Existence of IVP: 

Assume that           , 

 [ (   )  ̃]   (   [   ̃])       (   )        

Where     
     ,  (   ) is non-decreasing in   for each       and the max solution 

 (       ) of (1) exist on [    ). 

 

2.3   Approximate solution: 

A function  ( )   (         )      is said to be an   - approximate solution of (1) 

if           (          )     and  [  ( )  (   ( ))]          

In case       ( ) is a solution of (1). 

 

2.4   Stability Criteria: 

     Before we proceed further to investigate stability results of fuzzy differential 

equations, let us note the following fact. The solutions of fuzzy differential equations have, 

in general, the property that    , ( )-  is non-decreasing as time increases. Hence the 

formulation we have been working with is not suitable to reflect the rich behavior of 

solutions of  ordinary differential equations. 

 

Example: 

          Let     have level set , -  ,  
    

 - for     ,   - and suppose that a solution 

  ,   -    of the fuzzy differential equation 

 
  

  
     on   (e_1) 

 

 
 

has level set , ( )-  ,  
 ( )   

 ( )- for     and   ,   - 

Now the Hukuhara derivative 
 

  
 ( ) also has level sets ,

 

  
 ( )-  ,

 

  
  

 ( ) 
 

  
  

 ( )- 

By the extension principle ,the fuzzy set  ( ( ))    ( ) has level sets 

 

,  ( )-  ,   *  
   

    
   

    
   

    
   

 +      *  
   

    
   

    
   

    
   

 +- 

 

        thus the fuzzy differential equation (e_1) is equivalent to the coupled system of 

differential equations 
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 ( )     *  
   

    
   

    
   

    
   

 + 

 

  
  

 ( )     *  
   

    
   

    
   

    
   

 + 

 

(e_2) 

for particular        

then (e_1) becomes , 
  

  
     on   

and (e_2) becomes ,  
 

  
  

 ( )     
  and 

 

  
  

 ( )     
  (e_3) 

 

Let us consider to an IV      with ,  -
  ,   

     
 - for    . 

   

   

2

1 2 12

1 01

2

2 02

01 02

2

1 2 1 2

1 1 2

1 2 1

01 02

1 01 02 01 02

2

1 2

 A.E is,  1 0 1

 ,then 

 ,then 

1 1
 and 

2 2

1 1
  a

2 2

t t

t t

t t

t t

d d
x x x

dtdt

x x

d
x x

dt

x x

x x x x

x

m m

c e c e c c

c e c e

c e c e c c

c c

ex x x x e

  

 

 

 

   

    











     

    

   

     

    

    

 



   

   

   

2 01 02 01 02

0

1

2

 [ ] [ 1,1 ],  

1 (1 ) ( 1) (1 ) 1

1 (1 ) (

1 1
nd   

2 2

1 1
( ) ( )  

2 2

1 1
and  ( ) ( )

2 2

[ ( )] [( ) , ( ) ]

1) (1 ) 1

) 11 1 [1 (

t t

t t t

t t t

t t t

e e

e e e

e e e

x t e e

x x x x x

when x f

e

or I

x

x

    









  

    

   

  









    

     

      

  

   

    

 



  

  ,1]

 and 0,   [ ( )] 2(1 )  

 Hence the solution becoms fuzzier as time increases.

tI t dia x t e     
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2.5    Definition(H-difference): 

Let       . If there exists     such that        ; then   is called the 

H-difference of x and y and it is denoted by      

        Here   sign stands always for H-difference and let us remark that       (  ) . 

        Usually we denote   ( )   by      ; while       stands for the H-difference. 

 

2.6    Solutions under strongly generalized differentiability: 

Let   (   )    and    ,   -.We say that  is strongly generalized differentiable at 

   ,if there exit an element   (  )   ,such that  

(i)       sufficiently small ,   (    )   (  )  (  )   (    ) and the 

limits (in (   )) 

   
   

 (    )   (  )

 
    

   

 (  )   (    )

 
   (  ) 

 

or 

 

(ii)       sufficiently small ,   (  )   (    )  (    )   (  ) and the 

limits (in (   )) 

   
   

 (  )   (    )

  
    

   

 (    )   (  )

  
   (  ) 

 

or 

 

(iii)       sufficiently small ,   (    )   (  )  (    )   (  ) and the 

limits (in (   )) 

   
   

 (    )   (  )

 
    

   

 (    )   (  )

  
   (  ) 

 

or 

 

(iv)       sufficiently small ,   (  )   (    )  (    )   (  ) and the 

limits (in (   )) 

   
   

 (  )   (    )

 
    

   

 (  )   (    )

  
   (  ) 

 

A function that is strongly generalized differentiable as in cases (i) and (ii) , will be 

referred as (i)-differentiable or as (ii) differentiable, respectively.  

As for cases (iii) and (iv), a function may be differentiable as in (iii) or (iv) only on a 

discrete set of points (where differentiability switches between cases (i) and (ii)). 
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Theorem: If  ( )  * ( )  ( )  ( )+ is triangular number valued function, then 

a) If   is (i)-differentiable (Hukuhara differentiable) then     (        ). 

b) If   is (ii)-differentiable (Hukuhara differentiable) then     (        ). 

Proof: 

The proof of b) is as follows. Let us suppose that the H-difference exists. Then, by 

direct computation we get 

   
   

 ( )   (   )

  
 

* ( )   (     )  ( )   (   )  ( )   (     )+

  
 

 

                                                .
 ( )  (     )

  
 
 ( )  (   )

  
 
 ( )  (     )

  
/  (        ) 

 

Similarly,                          
 (   )  ( )

  
 (        ) 

 

2.7   Existence of several solutions under Hukuhara differentiability: 

            In the following equivalent crisp differential equations are considered 

       ( )     ( )               ( )  ( )     

When these equations are fuzzified we get three different fuzzy differential equations and 

exhibit very different behaviors. In this section, we begin with the inequivalent homogeneous 

FIVPs, and then contrast their behavior with the behavior of the solutions of the 

corresponding nonhomogeneous FDEs. In this section we use exclusively the Hukuhara type 

differentiability. 

 

Example: 

                Let us consider FIVP 

       ( )  (      ) 

The solution of this problem is  ( )  (        ). Its graphical representation  is
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          Surely since (i)-differentiability is in fact Hukuhara differentiability we obtain the 

unstable solution of the above figure. Under (ii)-differentiability condition we get the 

solution  ( )     (      ). Solution of above equation under (ii)-differentiability is 

represented in the below figure. 

 
Now, if we consider the corresponding equivalent nonhomogeneous FIVP, 

 

         (      )  ( )  (      ) 

 

(1) 

          (      )  ( )  (      ) 

 

(2) 

       (      )      ( )  (      ) 

 

(3) 

 

 

       Now from (1),we get 

 

 

     

   z

' 2 ; (0) 1 ' 0; (0) 0 ' 2 ; (0) 1

( ) (2 1) ( ) 0 ( ) (2 1)

( ) [ ( ), ( ), ( )] [ (2

2 1,0,1 , 0 1

1) ,0, (2 1

, ,

) ]

0 1

t t

t t

t

t

t

for x for y for

x x e x y y y z z e z

x t

u u

t e y t z t t e

u t x t y t z t t e t

e u

e

 

 

 



          

     

     

    
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                 So, we get that u is a solution of (1) on [0,0.5],we consider it on this interval only, 

however it exists on [-0.5,0.5].

 

        

                We now demonstrate the behavior of the solution when we consider the FIVP (2) 

in a different formulation. 

 

     

   z

' 2 ; (0) 1 ' ; (0) 0 ' 2 ; (0) 1

( ) (2 1)

2 1,0,1

( ) 0 ( ) (2 1)

( ) [ ( ), ( ), ( )] [ 2 ,0,2 ], (0, )

, 0 1,0,1

t t

t

t

t

t

t t t

for x for y for

x z e x y y y z x e z

x t t e y t z t t e

u t x t y t z t e e e e

e u

t

u u 

 

 

   



           

     

     

    




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            Let us consider the last equation on the list of inequivalent FDEs (3) obtained from 

equivalent crisp ODE 

 

     

   z

' 2 ; (0) 1 ' ; (0) 0 ' 2 ; (0) 1

( ) ( ) 0 ( )

( ) [ ( ),

2 1,0,1 , 0 1,0,

( ), ( )] [ ,0,

1

]

t t

t t

t

t t

for x for y for

x e z x y y y z e x z

x t e y t z t e

u t x t y t z t e e

u e u u

 

 

 



           

   



    





 

 

        

          

           but in this case u is not H-differentiable since the H-differences  (     )   ( ) 

and  ( )   (   ) do not exist. 

 

        We observe that the solutions of the equations (1) and (2) behave in quite different 

ways, as shown in Figures ,however these equations are different fuzzyfications of 

equivalent crisp ODEs. 

 

       Now we consider another example in two different formulations to see illustrate the 

situation. 

 

 

       Firstly let us consider the homogeneous FDE, 

 

' , (0) (2,3,4)u u u   

      

       It is easy to check that ( ) (2,3,4)tu t e  is Hukuhara differentiable solution of the above 

equation over [0;1). This solution is illustrated in the following Figure 
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Consider the initial value problems 

 

     (     )   ( )  (     ) 

 

(4) 

   (  )(     )     ( )  (     ) 

 

(5) 

     (     )   ( )  (     ) 

 

 

Now from (4), 

 

(6) 

     

   z

' ; (0) 2 ' 2 ; (0) 3 ' 3 ; (0) 4

( ) 3 1 ( ) 5 2 2 ( ) 7 3 3

( ) [ ( ), ( ), ( )] [

1,2,3 , 0 2,3,4

3 1,5 2 2,7 3 3], [0, )

t t t

t t t

for x for y for

x x t x y y t y z z t z

x t e t y t e t z t e t

u t x t y t z t e t e t

u u

t

t

e t

u

        

        

         

 





 

 

is Hukuhara differentiable and it is a solution of (4) 
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It’s graphical representation is 

 
 

 

 

Now from (5), 

 

 

 

      

   z

' 3 ; (0) 2 ' 2 ; (0) 3 ' ; (0) 4

( ) 5 3 3 ( ) 5 2 2 ( ) 5 1

( ) [ ( ), ( ), ( )] [3 1,5 2 2

1 1,2,3 , 0 2,

,7 3 3], [0,

3,4

)

t t t

t t t

for x for y for

x t x x y t y y z t z z

x t e t y t e t

u t

z t e t

u t x t y t z t e t e t e t t

u u

        

        

    

   

     

 

 

 

is Hukuhara differentiable and it is a solution of (5) 

 

 

 

 

It’s graphical representation is shone in the next picture 



 
 

Perspectives of Fuzzy Initial Value Problems Page2/ 11 

 
 

 

Now from (6), 

 

     
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' ; (0) 2 ' 2 ; (0) 3 ' 3 ; (0) 4
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1,2

2 3], (ln 2

,3 , ,

)

0 , 4

,

2 3

t t t t t

t t t t t

for x for y for

x z t x y y t y z x t z

x t e t e y t e t z t e t e

u t x t y t z t e t e e t e t e

u

t

u t u

 

 



        

          

         



 







 

 

 

        Since this is not a solution near the origin we do not consider it a proper solution of the 

problem (6). 

 

 

                                                  ( )     ( )             
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A PREY PREDATOR MODEL WITH FUZZY INITIAL VALUES 
 

         Here we discuss the prey predator model with the help of an example. 

 

        Consider the following prey-predator model with fuzzy initial values. Before 

giving a solution of the fuzzy problem we want to find its crisp solution. 

0.1 0.005

with initial condition (0) 130, (0) 40

0.4 0.008

dx
x xy

dt
x y

dy
y xy

dt


  

 
  


 

where x(t) and y(t) are the number of preys and predators at time t, respectively. 

 

Crisp solutions for the above problem are given in the below Figure 

 
 

       Let the initial values be fuzzy i.e  ( )     ̃      ( )    ̃ and let their  -level sets 

be as follows 
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( ) 130 [100 30 ,160 30 ]

( ) 40 [20 20 ,60 20 ]

x

y





  

  

    
 

    
 

 

 

     Let the  -level sets of  (   )      (   )     (   )  (   )   and for simplicity denote 

them as      , similarly   (   )     (   )  (   )           

Then 

[ ', '] 0.1[ , ] 0.005[ , ].[ , ],

[ ', '] 0.4[ , ] 0.008[ , ].[ , ]

u v u v u v r s

r s r s u v r s

 

    

 

Hence for  α= 0 the above initial value problem derives 

 

1) If  (   ) and  (   ) are (i)-differentiable then the above problem becomes 

' 0.1 0.005

' 0.1 0.005

' 0.4 0.008

' 0.4 0.008

u u vs

v v ur

r s ur

s r vs

 

 

  

  

 

           with  ( )       ( )       ( )      ( )     

 

 

 

2) If  (   ) and  (   ) are (ii)-differentiable then the above problem becomes 

' 0.1 0.005

' 0.1 0.005

' 0.4 0.008

' 0.4 0.008

v u vs

u v ur

s s ur

r r vs

 

 

  

  

 

           with  ( )       ( )       ( )      ( )     

 

 

Now for     the graphical solution of all possible cases are given below 

In the below picture , 

(1,1) means that  (   ) and  (   ) are (i)-differentiable, 

(1,2) means that x(t,α) is (i)-differentiable and y(t,α) is (ii)-differentiable, 

(2,1) means that x(t,α) is (ii)-differentiable and y(t,α) is (i)-differentiable, 

(2,2) means that x(t,α) and y(t,α) are (ii)-differentiable, 
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Fuzzy solutions of the Problem for      

 

          Now  if we analyze  the above  Figure, we observe that when  (   ) and  (   ) are 

(2)-differentiable the graphical solution is biologically meaningful, furthermore the graphical 

solution is coherent with the crisp solution. On the contrary, when  (   )  and  (   )  are 

differentiable as (1,1), (1,2), (2,1) the graphical solutions are incompatible with biological 

facts. 

 

         So we focus on the situation when  (   ) and  (   ) are (ii)-differentiable. We give 

the crisp graphical solution and fuzzy graphical solution when  (   ) and  (   ) are (ii)-

differentiable on the same graph for      and        . The crisp solution and fuzzy 

solution for       are given in the below Figure. 
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Crisp solution and fuzzy solution for      

 

 

           In  below two Figures, if we set     , we see the crisp solution confined by the left 

and right branches of the dependent variables x(t), y(t). For example in Figure, x(t) is 

confined by u and v for   = 0. Additionally, if we set   =1 the projection of the peaks of the 

triangles coincides with the crisp solution. 
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 ( )             

 

 

 
 ( )            

 

 

 

           As we see in this example, the uniqueness of the solution of a fuzzy initial value 

problem is lost when we use the strongly generalized derivative concept. This situation is 

looked on as a disadvantage. Researchers can choose the best solution which better reflects 

the behavior of the system under consideration, from multiple solutions. 
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Conclusions And Future Work 

 
Surely, the multitude of solutions that are obtained is not really a 

disadvantage, since from all the solutions we can find those which 

better reflect the behavior of the system under study. This selection of 

the best solution in our opinion can be made only from an accurate 

study of the physical properties of the system which is studied. This 

makes it necessary to study fuzzy differential equations as an 

independent discipline, and exploring it further in different directions 

to facilitate its use in modeling entirely different physical and 

engineering problems satisfactorily. In this sense, the different 

approaches are complimentary to each other. 

 

As we see in this work, the uniqueness of the solution of a fuzzy 

initial value problem is lost when we use the strongly generalized 

derivative concept. This situation is looked on as a disadvantage, but 

actually it is not because researchers can choose the best solution 

which better reflects the behavior of the system under consideration, 

from multiple solutions. Here a question may arise. Which solution is 

the best? The answer for this may come after a precise analysis of the 

physical properties of the system which is under study. 
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